A reproducible semi-automatic method to quantify the muscle-lipid distribution in clinical 3D CT images of the thigh
نویسندگان
چکیده
Many studies use threshold-based techniques to assess in vivo the muscle, bone and adipose tissue distribution of the legs using computed tomography (CT) imaging. More advanced techniques divide the legs into subcutaneous adipose tissue (SAT), anatomical muscle (muscle tissue and adipocytes within the muscle border) and intra- and perimuscular adipose tissue. In addition, a so-called muscle density directly derived from the CT-values is often measured. We introduce a new integrated approach to quantify the muscle-lipid system (MLS) using quantitative CT in patients with sarcopenia or osteoporosis. The analysis targets the thigh as many CT studies of the hip do not include entire legs The framework consists of an anatomic coordinate system, allowing delineation of reproducible volumes of interest, a robust semi-automatic 3D segmentation of the fascia and a comprehensive method to quantify of the muscle and lipid distribution within the fascia. CT density-dependent features are calibrated using subject-specific internal CT values of the SAT and external CT values of an in scan calibration phantom. Robustness of the framework with respect to operator interaction, image noise and calibration was evaluated. Specifically, the impact of inter- and intra-operator reanalysis precision and addition of Gaussian noise to simulate lower radiation exposure on muscle and AT volumes, muscle density and 3D texture features quantifying MLS within the fascia, were analyzed. Existing data of 25 subjects (age: 75.6 ± 8.7) with porous and low-contrast muscle structures were included in the analysis. Intra- and inter-operator reanalysis precision errors were below 1% and mostly comparable to 1% of cohort variation of the corresponding features. Doubling the noise changed most 3D texture features by up to 15% of the cohort variation but did not affect density and volume measurements. The application of the novel technique is easy with acceptable processing time. It can thus be employed for a comprehensive quantification of the muscle-lipid system enabling radiomics approaches to musculoskeletal disorders.
منابع مشابه
A Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملInfluences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom
Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...
متن کاملOptimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer
Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...
متن کاملGenerating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method
Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017